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Abstract. A mixed classical/quantum model for calculating the optical response of free and matrix-
embedded multilayered metal spheres in the dipolar approximation is presented. The conduction electrons
are quantum-mechanically treated in the framework of the time-dependent local-density-approximation
formalism (TDLDA), whereas the surrounding matrix, the ionic metal backgrounds and the non-metallic
materials are classically described through homogeneous charge distributions or/and dielectric media. Ex-
cept for the TDLDA calculations, the present formalism is completely analytical and can be applied to
coated spheres with any number of metal or dielectric layers. Contrary to the previous TDLDA-based mod-
els involving an inner or/and an outer dielectric medium (one or two interfaces), all the dielectric effects
(screening and absorption) are self-consistently calculated. In particular, the interband transitions and the
mutual interplay between the conduction and core electrons are self-consistently treated. The deficiencies
of the previous models are analyzed, and the results are compared with the classical Mie’s theory, over
the entire spectral range. The building-up of the classical absorption spectrum, consisting of the surface
plasmon resonance and the interband transitions, is clearly observed as the cluster size increases.

PACS. 36.40.-c Atomic and molecular clusters – 71.45.Gm Exchange, correlation, dielectric and magnetic
functions, plasmons – 71.10.-w Theories and models of many electron systems

1 Introduction

The optical properties of small metal particles have been
the subject of numerous experimental and theoretical
works [1]. As compared to the bulk, small particles exhibit
specific properties rooted in the collective excitations of
the delocalized conduction electrons. The classical Mie’s
theory for metal spheres (radius R) subjected to an exter-
nal electromagnetic field (wavelength λ), is undoubtedly
the basic achievement for the thorough understanding of
these original properties [2].

In cluster physics the radii of the studied particles
lie mostly in the size domain corresponding to the so-
called dipolar – or quasi-static – approximation, where
retardation effects can be neglected (R/λ � 1). For such
nanoparticles the light extinction is exhausted by the dipo-
lar absorption, and no size dependence is predicted, ex-
cept for a mere scaling volume factor. However most ex-
periments reveal large deviations from the Mie’s theory.
For instance, with regard to the surface plasmon excita-
tion, the measured frequency is red- or blue-shifted rela-
tive to the classical value ωMie, depending on the metal
and/or the experimental conditions [1,3,4]. In the case of
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matrix-embedded noble metal clusters, especially silver,
the Mie’s theory provides reasonable estimations and
seems to succeed better as compared to alkali species. As
a matter of fact, recent TDLDA calculations have pointed
out that the agreement is fortuitous and results from the
partial balancing of competing size trends induced by, re-
spectively, the electronic spillout at the cluster edge and
the lowering of the polarizability of the surface ionic cores
with respect to the bulk value [5–8]. Since the experiments
on the optical response of nanoparticles aim to probe the
electronic structure and the dynamics of the confined con-
duction electrons, an extension of the “macroscopic” Mie’s
theory taking into account some quantum finite size effects
is highly desirable, irrespectively of its success in some
specific cases.

Let us remind that the Mie’s theory is basically ap-
propriate to particles large enough, in such a way that the
quantum surface effects may be neglected. In particular, in
the classical description, a step-function for the electronic
surface density is assumed, and a Dirac-function for the
field-induced oscillating surface density is predicted. For
small clusters MN , a second length scale has to be in-
troduced, namely the Fermi wavelength of the conduction
electron gas λF ≈ 3.3rs (rs is the Wigner-Seitz radius
characterizing the electron density in the bulk). Typically
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λF is on the order of 10 a.u. (≈ 0.5 nm) and the condition
λF/R� 1 is not fulfilled. The size-dependent oscillations
in the electron density, especially the Friedel surface ones,
and the extension of the induced electron density on both
sides of the “classical” radius R = rsN

1/3, have thus to be
included in a self-consistent microscopic quantum model.

Well established formalisms, as the Random Phase Ap-
proximation [9] or the TDLDA [10,11], primarily applied
to simple Drude-like metal clusters [12], are available for
calculating these finite-size quantum corrections. For ob-
vious computational constraints ab initio methods cannot
be carried out, except for very small sizes [13], and phe-
nomenological descriptions of the ionic background and
surrounding matrix (embedded clusters) are necessary.
The quantum-mechanics treatment is thus restricted to
the conduction electron gas. Jellium-like models involving
continuous dielectric media have been reported in order to
include dielectric screening effects. Various versions, differ-
ing in the explicit – or implicit – assumed approximations,
can be found in the literature [5,6,8,14–18]. For instance,
in reference [14] devoted to simple metal clusters embed-
ded in a matrix, the screening of both the electron-electron
and electron-jellium interactions is only taken into account
in the ground-state electron density calculation, when it
was subsequently pointed out in reference [15] that the
main matrix-induced effect comes actually from the direct
dynamical screening of the electron-electron interaction.

As a matter of fact the previously quoted TDLDA-
based models involving dielectric media [5,6,8,14–18] suf-
fer from severe deficiencies which will be emphasized in
this paper. In the previous approaches dealing with dielec-
tric backgrounds, the standard TDLDA formula, suitable
for a simple metal particle, have been directly used with
appropriate modifications, instead of deriving beforehand,
from the classical model counterpart, a well-founded self-
consistent TDLDA-based model in presence of dielectric
media. We list the three main encountered deficiencies:

(i) the applied external field is substituted for the actual
external field experienced by the electron gas, and the
induced density is incorrectly calculated;

(ii) the computed observable σe(ω) = (4πω/c)=[αe(ω)],
namely the imaginary component of the dynami-
cal electron gas polarizability, is assumed to be the
– normalized – power dissipated by the conduction
electrons, and is thus expected to reproduce quanti-
tatively the absorption spectrum below the interband
threshold;

(iii) the real interband excitations, which dominate the
absorption spectra in the UV domain and strongly
quench the surface plasmon peak in most metals (for
instance gold and copper), are not included in the
model.

Due to the explicit approximation (iii) the TDLDA-
spectra cannot be quantitatively compared to the classical
Mie’s predictions or the experiments, over the whole spec-
tral range. The above deficiencies will be more lengthily
analyzed, and exemplified, in the following.

This work aims to include quantum finite-size ef-
fects in the Mie’s theory for a free or matrix-embedded

multilayered metal sphere [1,19], in the dipolar approxi-
mation. As stated previously, only the conduction electron
gas is quantum-mechanically handled. The optical proper-
ties of the various media or ionic metal backgrounds (the
inner sphere, layers and matrix) are described through
phenomenological dielectric functions. The self-consistent
determination of a possible size-dependence of the optical
constants of these backgrounds is out of the scope of this
hybrid quantum/classical model [20]. Nevertheless such a
size-dependence could be phenomenologically included by
modifying the involved dielectric functions. The spheri-
cal symmetry and the dipolar quasi-static approximation
are assumed. As compared to the previous quantum ap-
proaches based on the same approximations, all the dielec-
tric effects (screening and absorption) are self-consistently
calculated, in particular the real intra- and inter-band
excitations and the mutual influence of all the induced
charge densities. The model requires simple additional an-
alytical developments, based on classical electrodynamics,
with respect to the standard TDLDA formalism appropri-
ate to simple Drude-like metal particles in vacuum.

This paper is organized as follows. In Section 2 the
general formalism for any number of layers and interfaces
is presented, for both the pure classical and the hybrid
classical/quantum models. In Section 3 absorption spec-
tra of free and matrix-embedded silver and gold clusters
are displayed and compared with, on the one hand the
results of the previous models (Sect. 3.1), on the other
hand the Mie’s predictions (Sect. 3.2). A detailed analysis
emphasizing the deficiencies or approximations in previ-
ous theoretical approaches is provided in Section 3.1. The
summary of this work is given in Section 4.

Atomic units and relative dielectric functions are
used throughout this paper. The notations <[ ], =[ ]
and | | stand for the real component, the imaginary
component and the modulus of complex numbers, respec-
tively. For convenience the evident variable- or parameter-
dependence of the various expressions are omitted.

2 Theory

2.1 Classical approach

The system consists of several concentric layers (interface
radii Rj) of different materials (dielectric functions ε′j),
centred around a spherical core and embedded in a non
absorbing matrix (see Fig. 1). The core and layers can be
any metal, dielectric medium, or even the vacuum (in or-
der to mimic defects or the local porosity at the outermost
interface [6,8]). If necessary the progressive transition in
the optical properties from one layer to the neighbouring
ones may be eventually taken into account by adding thin
shells with intermediate optical constants. The only re-
quirement is the homogeneity of the core, the matrix and
the various layers.

The system is subjected to a linearly-polarized ex-
ternal electromagnetic field Eext(t) = E0e−iωtez (dipo-
lar approximation). The total induced potential and
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Fig. 1. Model of the matrix-embedded multilayered metal par-
ticle. The {ε′i(ω)} are the dielectric functions of the various
materials.

electric field are of the form φ′c(r)e−iωt and E(r, t) =
−∇φ′c(r)e−iωt [21]. The classical Mie-cross-section corre-
sponding to the dipolar absorption can be obtained by
solving the Poisson equation ∆φ′c(r) = 0 (no free charge)
for the total induced potential φ′c(r) = f ′c(r) cos(θ)E0,
with the appropriate boundary conditions at r = 0 (f ′c(0)
is finite), r = ∞ (E(r, t) = Eext(t)) and at the vari-
ous interfaces (continuity of f ′c and of the normal compo-
nent of the displacement vector, namely ε′i[df

′
c/dr](R

−
i ) =

ε′i+1[df ′c/dr](R
+
i )). The analytical solution of the Poisson

equation takes the well-known form

f ′c(r) = a1r (r ≤ R1)

f ′c(r) = −r +
bm
r2

(r ≥ Rk)

f ′c(r) = air +
bi
r2

(Ri−1 ≤ r ≤ Ri, 1 < i ≤ k) (1)

where the coefficients ai and bi are functions of the inter-
face radii {Ri} and dielectric constants {ε′i(ω)}. Beyond
the outermost interface Rk, the total potential is the sum
of the applied external potential −E0ze−iωt and the one
produced by a time-varying induced dipole p′c(t) located
at the origin in the homogeneous matrix

p′c(t) = εmbmEext(t) = α′c(ω)Eext(t) (2)

α′c(ω) is the classical matrix-embedded multilayered parti-
cle polarizability. The power A dissipated by the multilay-
ered particle can be calculated by direct integration over
the volume Vi of each absorbing medium (ε′i complex),
according to

A =
〈∫
<[E(r, t)]

∂

∂t
<[P(r, t)]dr

〉
=
ω

2

∑
i

=
[
ε′i − 1

4π

] ∫
Vi

|E(r)|2 dr. (3)

E and P are the electric field and polarization vectors,
and the symbol 〈 〉 stands for the time averaging. A can
be alternatively expressed in terms of the induced dipole

p′c(t) subjected to the applied external field Eext(t)

A =
〈
<[Eext(t)]

d
dt
<[p′c(t)]

〉
=
ω

2
= [α′c(ω)]E2

0 . (4)

The classical dipolar absorption cross-section is obtained
by dividing the dissipated power A by the incident energy
flux inside the matrix I0 = cE2

0 [εm]1/2
/

8π

σ(ω) =
A

I0
=

4πω

cε
1/2
m

= [α′c(ω)] . (5)

2.2 The mixed classical/quantum model

In the present model the optical response of the conduc-
tion electrons in the various metallic materials are mi-
croscopically treated within the TDLDA formalism. The
electronic gas is then described through an explicit inho-
mogeneous density n(r, t) = ngs(r) + δn(r)e−iωt, where
ngs(r) is the ground state density. In order to be consis-
tent with the usual TDLDA formalism, the electron charge
density is −n(r, t). Each ionic metal background is phe-
nomenologically described by both:

(i) a homogeneous positive charge distribution n+
i (r) (jel-

lium approximation), and,
(ii) a homogeneous dielectric medium characterized by

the dielectric function εi(ω), referred to as the “in-
terband contribution” in the following.

Assuming that ε′i(ω) can be split according to ε′i(ω) =
εi(ω)+εs(ω)−1, where εs(ω) is the Drude-like contribution
related to the conduction electrons, εi(ω) can be extracted
from ε′i(ω) by a Kramers-Kronig analysis [8]. Let us point
out that, with respect to the optical excitation, the jel-
lium is inert (i.e. no time-varying ionic density δn+

i (r) is
induced by the external field), that is all the polarization
charges induced in the background are described through
the response of the dielectric medium.

As compared to the pure classical model (Sect. 2.1), we
are faced – formally – with a “classical” problem almost
similar, but involving now dielectric backgrounds with op-
tical constants εi(ω) (εi(ω) = ε′i(ω) for non-metallic ma-
terials) and free charge densities {n+

i (r)} and n(r, t).
The total induced potential φ(r) = f(r) cos(θ)E0 is

now solution of the Poisson equations∆φ(r) = 4πδn(r)/ε1

(0 ≤ r < R1), ∆φ(r) = 4πδn(r)/εi (Ri−1 < r < Ri) and
∆φ(r) = 4πδn(r)/εm (r > Rk), with the same boundary
conditions as previously except for the replacement of ε′i
by εi. The strategy for deriving the present model consists
in determining analytically the dipolar coefficient in the
long range behaviour of f(r) as a function of the interface
radii {Ri}, the dielectric functions {εi} and the induced
density δn(r), and then calculate self-consistently δn(r)
by the appropriately-modified basic TDLDA equations.

Due to the linearity of the Poisson equation, f(r) is
the sum of two terms (f = fc + fδn) corresponding, re-
spectively, to the two free charge time-varying sources.
The first contribution fc(r) (φc(r) = fc(r) cos(θ)E0) cor-
responds to the charge source implicitly underlain by the
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boundary condition at r = ∞, that involves the ap-
plied external field (E(r, t) = Eext(t)). φc(r) is thus so-
lution of the Poisson equation ∆φc(r) = 0. fc(r) is given
by the classical solution equation (1), except for the re-
placement of the parameter-set {ε′i(ω)} by the parameter-
set {εi(ω)}. The corresponding polarizability αc = εmbm
(Eq. (2)) is the one characterizing the induced dipole pc(t)
in the absence of the electron gas. Its analytical expression
αc({Ri}, {εi}) is the same as the one obtained within the
pure classical approach (Sect. 2.1), except for the substi-
tution ε′i(ω) → εi(ω). The field Ec(r, t) = −∇φc(r)e−iωt

will be referred to as the “directly Eext(t)-induced effec-
tive external field” for the electron gas. It consists of the
applied external field Eext(t) and the field arising from the
polarization charges that are directly induced by Eext(t).
Let us point out that the total actual field experienced
by the electron gas is the sum of Ec(r, t) and its self-one
Eδn(r, t) = −∇φδn(r)e−iωt, which includes the contribu-
tion arising from the polarization charges that are directly
induced by δn(r, t). This distinction, useful for the fol-
lowing, is introduced for convenience, seeing that – ob-
viously – all the induced dipolar contributions originate,
primarily, from the applied field Eext(t). The second con-
tribution fδn(r) is solution of the radial equation

[
d2

dr2
+

2
r

d
dr
− 2
r2

]
fδn(r) =

4π
εi
δn(r) (6)

where δn(r) is defined by δn(r) = δn(r) cos(θ)E0. fδn(r)
behaves as αδn/εmr

2 at long distance, where pδn =
αδn(ω)Eext(t) is the total dipole related to the induced
electron density, the relevant induced polarization charges
included. αδn can be obtained analytically by integrating
equation (6) from r = ∞ to r = 0 and prescribing that
fδn(0) is finite. The method is outlined in Appendix A

αδn =
4π
3

∞∫
0

r2fc(r)δn(r)dr. (7)

The total dipole of the matrix-embedded multilayered par-
ticle, i.e. the quantum counterpart of equation (2), is
therefore

p(t) = pc(t) + pδn(t) = α(ω)Eext(t). (8)

α(ω) = αc(ω) + αδn(ω) is the matrix-embedded particle
polarizability. Let us emphasize that the various polar-
izabilities, in the pure classical model as well as in the
present model, are defined relative to the applied exter-
nal field Eext. The imaginary component of α(ω) gives
the total dipolar absorption cross-section (α(ω) instead
of α′c(ω) in Eq. (5)). Since the dielectric backgrounds are
homogeneous, the dissipated power inside each absorbing

medium i can be obtained by the formula equation (3)

Ai =
ω

2
=
[
εi − 1

4π

] ∫∫∫
|E(r)|2 dr

=
ω

2
=
[
εi − 1

3

]
E2

0

Ri∫
Ri−1

[
|df(r)/dr|2 r2 + 2 |f(r)|2

]
dr.

(9)

The power dissipated by the conduction electron gas is
given by

Ae = σ(ω)I0 −
∑
i

Ai. (10)

Let us emphasize that, when several absorbing media are
simultaneously present, the dissipated power by a specific
medium has to be evaluated by direct integration through
equation (9). The power is not related, as usually assumed
in previous works, to the imaginary component of the to-
tal dipole corresponding to this medium. Moreover, let us
stress that, except for a free particle, both the real and
imaginary components of the dipole p(t) governing the
asymptotic behaviour of the potential are different from
those of the total dipole of the multilayered particle (in-
tegration of the polarization vector over the coated parti-
cle volume). As a matter of fact, p(t) or equivalently the
dynamical polarizability α(ω), is a characteristic of the
matrix-embedded particle. The reason is that the polar-
ization of the non-absorbing matrix modifies the effective
external field experienced by the various absorbing media
inside the particle (both the in-phase and out-of-phase
components, with respect to the phase e−iωt in Eext(t),
are concerned). These brief remarks will be exemplified in
Section 3.1.

The second step in the derivation of the model con-
sists in determining self-consistently the induced electron
density δn(r). This is achieved by suitably modify the ba-
sic ingredients of the TDLDA formalism [10–12], namely
the kernel in the integral equation for the density-density
correlation nonlocal function χ(r, r′), and the relationship
between the induced density δn(r) and the applied exter-
nal field Eext(t).

The Kohn-Sham mean field potential in the density
functional theory (DFT) (the local approximation is as-
sumed) is

Veff(r, ngs) =
∫
Vc(r, r′)

[
ngs(r′)−

∑
i

n+
i (r′)

]
dr′

+ vxc[ngs(r)]. (11)

The first term is the classical Coulomb interaction with
all the free and polarization charge densities. vxc[ngs(r)]
is the exchange-correlation potential. Let us remind that
n+
i (r) = 0 for non-metallic media. Vc(r, r′) is the effec-

tive Coulomb interaction between two free elementary
charges located at r and r′ in the presence of the con-
centric dielectric media i = 1, 2, . . . , k,m, and depends
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on the parameter sets {Ri} and {εi(ω)}. The analyti-
cal formula for the simplest cases (one interface (k = 1)
and two interfaces (k = 2)), which depend on the lo-
cations of r and r′ relative to the interface radius R1

(radii R1 and R2), can be found in references [8,15]. Ac-
tually only the ` = 0 (ground-state) and ` = 1 (dynam-
ical screening) components in the multipolar expansion
of Vc are involved in the model. For the ground-state
calculation the static dielectric constants εi(ω = 0) are
involved in Vc. A formulation involving explicitly the po-
larization charges in the various media (labelled ni(r)
(i = 1, 2, . . . , k,m) for both the volume and surface charge
densities) is more transparent for the subsequent explana-
tions

Veff(r, ngs) =
∫
ngs(r′)−

∑
i[n

+
i (r′) + ni(r′)]

|r− r′| dr′

+ vxc[ngs(r)]. (12)

In presence of the applied external field Eext(t) the charge
distributions acquire an induced oscillating component
(except n+

i (r), since the dielectric properties of the ionic
backgrounds are completely described through εi(ω)), i.e.
−δn(r)e−iωt and δni(r)e−iωt = [δnic(r) + δnie(r)]e−iωt. In
the last expression the induced polarization charges in the
dielectric media have been split into the respective con-
tributions that are directly-induced by the two oscillating
free-charge sources, namely the applied field Eext(t) (δnic)
and the induced electronic charge −δn(r)e−iωt (δnie). Ac-
cording to the TDLDA formalism the induced electron
density is obtained from the independent-electron density-
density correlation nonlocal function χ0(r, r′) provided
that the induced time-varying component of the mean field
potential δVeff(r)e−iωt is added to the applied external in-
teraction potential Vext(r, t) = r cos(θ)E0e−iωt

δVeff(r) =
∫
δn(r′)−

∑
i δnie(r′)

|r− r′| dr′ +
∂vxc[ngs]

∂n
δn(r)

+
[
Vext(r) −

∫ ∑
i δnic(r′)
|r− r′| dr′

]
. (13)

The first term is the Coulomb interaction with the in-
duced electron density and the directly δn-induced po-
larization charges. Its expression is nothing else but∫
Vc(r, r′)δn(r′)dr′, where now the dielectric constants

εi(ω) corresponding to the frequency ω have to be used in
Vc. The third term V ′ext(r) (square brackets), which does
not depend on δn(r), is the effective external interaction
potential for the electron gas and its directly-induced po-
larization charges, namely the applied external interac-
tion potential Vext(r) plus the interaction with the directly
Eext-induced polarization charges δnic. It is thus obvious
that V ′ext(r) = −φc(r) = −fc(r) cos(θ)E0. The induced
electron density δn(r) and the correlation function χ(r, r′)
are therefore obtained from the following modified basic

TDLDA-equations

δn(r) =
∫
χ(r, r′)V ′ext(r

′)dr′ (14)

χ(r, r′) = χ0(r, r′)

+
∫∫

χ0(r, r1)K(r1, r2)χ(r2, r′)dr1dr2 (15)

where the kernel K(r1, r2), the so-called residual interac-
tion, is expressed as

K(r1, r2) = Vc(r1, r2) +
∂vxc[ngs]

∂n
δ(r1 − r2). (16)

The correct integral equation for χ(r, r′) has been already
involved in some recent works devoted to free and em-
bedded metal clusters [5,6,8]. However the induced den-
sity δn(r) has been incorrectly calculated by using Vext

instead of V ′ext in equation (14). In some other works
the correct effective external interaction potential V ′ext

has been involved, but in the framework of “incomplete”
or approximate models [16,18]. Especially, in all previ-
ous TDLDA-investigations involving dielectric media, the
formula σe(ω) = (4πω/c)=[αe(ω)] has been used for cal-
culating the absorption cross-section, where αe(ω) is the
dynamical electron gas polarizability

αe(ω) = −4π
3

∞∫
0

r3δn(r)dr. (17)

The present model clearly stresses that the electronic
dipole pe(t) = αe(ω)Eext(t), more precisely =[αe(ω)],
is not the relevant observable, except for simple metal
(Drude-like) clusters in vacuum. Moreover, σe(ω) is not
related to the power dissipated by the electronic gas. This
statement holds for both the pure classical and the present
models, and will be exemplified in the next section.

It is instructive to relate the dynamical polarizability
αδn with the density-density correlation function. From
equations (7, 15) one can show that

αδnE0 = −
∫
χ(r, r′)V ′ext(r

′)V ′ext(r)drdr′. (18)

Equation (18) is nothing else but the generalization of the
standard TDLDA formula with V ′ext (effective external in-
teraction potential) instead of Vext = zE0 (applied exter-
nal interaction potential). Let us emphasize again that
the dynamical polarizability αδn includes contributions
from both the conduction electron gas and the directly
δn-induced polarization charges nie.

3 Application to noble metal clusters

In this section we exemplify the above formalism in the
simple cases involving, either a single, or two concentric
interfaces. For the purpose of physical interest, the op-
tical response of silver and gold clusters, either free or
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matrix-embedded, are calculated. The real and imaginary
components of the interband contribution ε1(ω) for these
two metals have been extracted from the experimental
data by a Kramers-Kronig analysis, and are displayed in
references [6,8]. We remind that the interband thresholds
(excitations of the d electrons) are about 3.9 eV and 1.9 eV
for silver and gold, respectively.

This section is divided into two parts. In Section 3.1
we compare the predictions of the present model with the
results obtained within the former theoretical approaches
[5–8,14–18]. Previous theoretical studies [6,8] on the size
evolution of the surface plasmon band are briefly com-
mented. In Section 3.2 the results of the present hybrid
model are quantitatively compared with the predictions
of the classical Mie theory. As compared to the former
TDLDA-based formalisms, the improvements are unques-
tionable, over the whole spectral range.

3.1 Comparison with the previous theoretical
approaches

The comparison with the former TDLDA-based works is
exemplified in the simple case consisting of a metal sphere
(radius R1) in vacuum or embedded in alumina. This ma-
trix is non absorbing in the energy range 0.15–6 eV, and
its real dielectric constant εm(ω) is on the order of 3. The
ingredients of the present model in the case of a single
interface are given in Appendix B. We remind that in the
TDLDA formalism [10–12] the evaluation of the Green’s
functions G(r, r′, E) = 〈r

∣∣[H −E − iδ]−1
∣∣ r′〉 for calculat-

ing the independent-electron nonlocal correlation function
χ0(r, r′) requires the use of a finite value for the infinites-
imal δ-parameter. This amounts roughly to attributing
an intrinsic width 2δ to each bound-bound particle-hole
excitation line (Lorentzian-shaped peaks). In the present
calculations δ is fixed to 100 meV. In most displayed spec-
tra, this value is large enough to smooth out the possible
fragmentation pattern due to the coupling of the collective
surface plasmon mode with the single particle excitations
(Landau damping [22]).

In Figures 2 and 3 are displayed absorption spec-
tra for free and matrix-embedded AuN and AgN clus-
ters. The predictions of the model (Eq. (5) with α(ω) =
αc(ω) + αδn(ω) instead of α′c(ω), thick line curves) are
compared with those obtained when only the electron
gas polarizability αe(ω) (Eq. (17)) is involved in the gen-
eral absorption cross-section formula (Eq. (5)). In the two
previous approaches the kernel (Eq. (16)) is appropri-
ately modified, and the density-density correlation func-
tion χ(r, r′) (Eq. (15)) is thus correctly calculated. The
two models differ in the evaluation of δn(r) from equa-
tion (14). In the first crude theoretical approach Vext(r)
(the applied external interaction potential) is used in-
stead of V ′ext(r) (dashed line curves; model referred to as
“model 1”). In the second model δn(r) is correctly calcu-
lated (thin line curves; model referred to as “model 2”).
The present model is referred to as “model 3”.

The discrepancies between the various curves are very
large, not only in the UV spectral range where the

Fig. 2. Photoabsorption spectra of free gold and silver clusters.
Thick line curve: result of the present model (model 3). Thin
and dashed line curves: results of the previous models (models 2
and 1, respectively). The maxima of the dashed line peaks are
about 33 (Au832) and 90 (Ag832).

interband excitations – neglected in the previous works –
dominate the absorption, but also in the spectral range
of the surface plasmon mode. The differences are much
more pronounced in the case of free gold clusters, due to
the partial quenching of the plasmon band by the inter-
band transitions. The plasmon peak still remains visible,
because it is located just above the interband threshold
(in gold the imaginary component =[ε1(ω)] presents a flat
maximum between 3 eV and 5 eV).

Despite the deficiencies in the previous approaches one
can notice that the peak location, as well as the under-
lying fragmented pattern (see Fig. 3), are correctly re-
produced, especially for silver. This fortunate agreement
can be explained by inspecting the explicit formula re-
ported in Appendix B. In the models 2 and 3 V ′ext(r) has
different analytical expressions on both sides of the in-
terface, whereas Vext(r) = r cos(θ)E0 in model 1. If the
radial region r > R1 is disregarded, the approximate re-
lation V ′ext(r) ≈ −a1(ω)Vext(r) holds. Therefore the in-
duced electronic density and dipole pe = αe(ω)E0ez are
the same in the three models, except for the missing of
the scaling factor −a1(ω) in the model 1. Consequently,
below the interband threshold (−a1(ω) is real and posi-
tive), the absorption spectra calculated in the two mod-
els 1 and 2 differ from each other through a ω-dependent
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Fig. 3. Same as the caption of Figure 2 for alumina-embedded
clusters.

scaling factor. If the plasmon peak-width is small enough,
as compared to the spectral range where a1(ω) changes
noticeably, both the location and the width of the plas-
mon band are similar in both models 1 and 2, and only
the amplitude is different. On the other hand, above the
interband threshold, χ(r, r′), δn(r) and V ′ext(r) are com-
plex, and the respective imaginary components of αe(ω)
in the two models 1 and 2 are no longer related by the
simple scaling factor −a1(ω). This is clearly illustrated in
Figures 2 and 3 in the UV spectral range.

Let us now consider the present model and – as done
previously – let us disregard the second term in equa-
tion (B.3). Below the interband threshold, we have the
approximate relations

αδn(ω) ≈ −a1αe(model 2) ≈ a2
1αe(model 1)

with −a1(ω) = 3εm/(ε1 + 2εm). We remind that
αδn(ω)E0ez includes, in addition to the electronic dipole
pe = αe(ω)E0ez, a contribution arising from the dielec-
tric media (polarization charges n1e and nme). The above
relations point out clearly the deficiencies of the mod-
els 1 and 2. In the model 2 pe is correctly calculated,
but its imaginary component is incorrectly substituted
for the one of the total dipole p(ω) = α(ω)E0ez govern-
ing the long range behaviour of the potential. Even if the
inner dielectric medium is non absorbing in the relevant
spectral range, this substitution is unsuitable and leads
to erroneous quantitative predictions. The reason is that

both the real and imaginary components of the total po-
larizability α(ω) = αδn(ω) + αc(ω) are global properties
of the matrix-embedded metal particle. Actually α(ω) is
an intrinsic property of the particle (metal sphere) only
if εm = 1 (vacuum). Moreover, even in the simple case
of a free metal cluster involving a non absorbing inner
medium (ε1(ω) is real in the relevant spectral range), the
absorption cross-section is not directly given by =[αe(ω)].
In vacuum the total dipole p(ω) is obviously the sum
of the total dipoles corresponding to, respectively, the
conduction electron gas and the inner medium, namely
p = pe + p1 = [αe(ω) + α1(ω)]Eext. However, due to the
absorption by the electron gas, the actual field experi-
enced by the inner medium has a component in quadra-
ture with respect to the applied external field Eext(t) =
E0e−iωtez. Therefore both pe and p1 are complex and
contribute to the absorption cross-section formula, al-
though no energy is dissipated in the inner medium 1
(=[α(ω)] = =[αe(ω)] + =[α1(ω)] ≈ −a1(ω)=[αe(ω)]). Ac-
tually, when the system consists of several materials, the
dissipated power in a specific medium is not related merely
to the imaginary component of the corresponding dipole:
in the TDLDA-formalism the in-phase and π/2-out-of-
phase components are defined relative to the phase of the
applied external field E0e−iωtez, and not relative to the
one of the effective external field experienced locally by
the medium. Thus, in most cases, the dissipated power in
each homogeneous material has to be calculated by direct
integration according to equation (3).

The above comments emphasize the two main points
that have been implicitly circumvented, or insufficiently
analyzed, in the previous works involving embedded clus-
ters or free clusters consisting of several materials:

(i) the global nature of the overall matrix-embedded
metal particle polarizability, and,

(ii) the effective external field (amplitude and phase) ex-
perienced locally by each – absorbing or non ab-
sorbing – medium and their mutual interplay. All
these remarks apply to both the classical and hybrid
models.

These remarks can be easily supported – analytically –
within the classical Mie theory.

In Figure 4 are shown the various contributions
to the overall absorption cross-section σ(ω) (thick
line curves). The contribution of αδn(ω) (σδn(ω) =
(4πω/cε1/2

m )=[αδn(ω)]; thin line curves), the absorption
cross-sections corresponding to the core electrons (i.e.
A1/I0, Eq. (9); dashed line curves) and to the conduction
electrons (σe(ω) = σ(ω)−A1/I0; dotted line curve in the
upper figure) are displayed. As expected, in silver clusters
the conduction electrons are entirely responsible for the
surface plasmon band and contribute only very weakly to
the absorption in the UV spectral range (this holds true
for embedded clusters). On the other hand, for gold clus-
ters, both the conduction and core electrons contribute
to the absorption in the visible spectral range, in partic-
ular to the collective Mie excitation. This joint contribu-
tion is especially striking in the case of free gold clusters,
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Fig. 4. The various contributions to the overall absorption
cross-section σ(ω) (thick line curves). Thin line curves: contri-
bution of the polarizability αδn(ω) (see Eq. (7)). Dashed line
curves: contribution of the core electron excitations. Dotted
line curve (upper figure): contribution of the conduction elec-
tron excitations.

and to a lesser extent for embedded clusters. Actually,
when the intra- and inter-band excitations are strongly
coupled, the oscillator strength related to the conduction
electron excitations is spread over the entire VIS-UV spec-
tral range.

The respective contributions of αδn(ω) and αc(ω) to
the overall absorption cross section deserves a brief com-
ment. Beforehand let us remind that =[αc(ω)] = 0 below
the interband threshold (αc(ω) is related to the polariza-
tion properties of the inner medium 1 only). Above the
interband threshold, both contributions are of the same
order of magnitude in the case of silver clusters. In the
case of gold, this holds true only far above the threshold.
In Figure 4 the contribution of αc(ω) practically vanishes
below 2.8 eV, although the core electrons still contribute
largely to the absorption cross-section. The reason is that
only the polarizability αδn(ω) reflects the strong enhance-
ment of the effective local field inside the cluster when
the collective dipolar mode is excited (the full dielectric
function of the metal is implicitly involved in this term).

Owing to the deficiencies of the former models, the size
evolution of the surface plasmon frequency in small no-
ble metal clusters have been re-investigated in the frame-

work of this improved formalism. The qualitative and
quantitative analyses about the finite-size effects, that
were previously reported [6,8], remain suitable. In the
case of gold, only a very tiny additional blue-shift of the
peak maximum, due to the superimposition with the in-
terband transitions, is observed. Especially, the relevance
of both:

(i) the inner surface skin of ineffective screening (thick-
ness d), introduced early by Liebsch in the context of
metal surfaces [23], and,

(ii) the interface vacuum rind (thickness dm) for simulat-
ing the local matrix porosity at the particle/matrix
interface (embedded clusters), is confirmed.

Experimental results on alumina-embedded AuN and
AgN clusters can be found in reference [20] (second ref-
erence) and reference [6], respectively. Some theoretical
absorption spectra are presented in Section 3.2.

3.2 Comparison with the classical Mie theory

As compared to the classical theory, the present model
differs only in the description of the ground-state elec-
tron density and its dynamical response to an external
electromagnetic field. Therefore the classical polarizabil-
ity α′c(ω) (Eq. (2)) has necessary to be recovered if the
classical induced electron density δnc(r) is used in equa-
tion (7). This can be easily checked in the simple case
involving a single interface, with R1 = RN . In the clas-
sical model the electric field inside the metal sphere is
homogeneous (Eint(t) = [3εm/(ε′1 + 2εm)]E0e−iωtez) and
the polarization vector corresponding to the free charge
densities (conduction electrons and jellium) is Pint(t) =
[(εs− 1)/4π]Eint(t). The induced polarization charge den-
sity related to the Drude contribution in the metal dielec-
tric function (ε′1(ω) = εs(ω) + ε1(ω)− 1) is located at the
interface, and is equal to

σc(r, t) = δ(r −R1)Pint(t)(r/r) = −δnc(r) cos(θ)E0e−iωt

with

δnc(r) = −[(εs − 1)/4π][3εm/(ε′1 + 2εm)]δ(r −R1).

By using the alternative expression (B.4) in the Ap-
pendix B for calculating αδn(ω), it is straightforward to
show that αδn(ω) + αc(ω) = α′c(ω).

In the following we investigate, on the one hand how
far are the classical results in the small-size domain rel-
ative to those calculated within the present microscopic
TDLDA approach, and, on the other hand, the rate with
which the results of the present model converge towards
the classical theory as the cluster size increases. This com-
parative study is carried out in the framework of simple
models, involving either one or two interfaces, and exem-
plified in the case of gold clusters. In order to be consis-
tent with the line-width parameter 2δ = 0.2 eV used in
the TDLDA calculations (see the beginning of Sect. 3.1),
the value Γ = 0.2 eV is assumed in the Drude dielectric
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Fig. 5. Comparison between the results of the quantum model
(thick line curves) and the classical Mie-theory (thin line
curves), for free gold clusters.

function εs(ω) = 1−ω2
p/[ω(ω+iΓ )], where ωp = (3/r3

s )1/2

is the bulk plasma frequency. Let us emphasize that this
prescription does not imply necessarily that the width of
the surface plasmon peak will be identical in both models,
since the present TDLDA approach gives rise to finite size
effects, in particular the size-dependent Landau fragmen-
tation of the collective mode. In each figure, both spectra
have been scaled by the same factor, and can be thus
quantitatively compared.

In Figures 5 and 6 are displayed absorption cross-
sections for free and alumina matrix-embedded gold clus-
ters, within the standard Mie-like model (d = dm = 0, see
the end of Sect. 3.1). We remind that the only size de-
pendence in the classical model is a mere volume scaling
factor. Contrary to the previous theoretical models, we see
that the magnitude of the absorption cross-sections in the
pure classical and hybrid models are now of the same order
of magnitude. For free clusters the TDLDA cross-sections
are systematically larger, over the entire spectral range.
By contrast, the trend is inverted in the case of embedded
gold clusters, except in the vicinity of the surface plasmon
frequency. In fact this feature is element-dependent. For
silver, owing to the gap between the respective spectral
ranges involving the conduction and core electron excita-
tions, a quite good quantitative agreement over the whole
UV spectral region is observed for any size and for both
free and embedded clusters.

With regard to the location of the Mie band, no size ef-
fect is observed in the case of free gold clusters, as already
pointed out in our early work [8]. At first sight the agree-
ment with the classical predictions is surprising, since the
quantum spillout phenomenon is not taken into account

Fig. 6. Comparison between the results of the quantum model
(thick line curves) and the classical Mie-theory (thin line
curves), for alumina matrix-embedded gold clusters.

within the Mie theory. Actually this agreement is fortu-
itous and results from the exact balancing between:

(i) the spillout-induced red-shift trend, and,
(ii) the simultaneous blue-shift trend due to the fact that

the Coulomb interaction is less screened for the elec-
trons lying beyond the cluster surface.

For silver clusters the surface plasmon frequency calcu-
lated within the quantum model is red-shifted with respect
to the classical value, suggesting that the balancing is not
perfect in this case. In silver the screening by the ionic
background polarization is lower, as compared to gold
(in the spectral range of their respective Mie-frequency
<[ε1(ω)] ≈ 4.5 and ≈ 10, for silver and gold, respectively).
Therefore, in silver clusters, the spillout-induced red-shift
trend has a stronger relative influence on the overall size
effects.

In the case of embedded clusters, both the electron
spillout and the Coulomb-interaction screening beyond
the surface are enlarged, as compared to free clusters. The
TDLDA Mie-band is thus red-shifted relative to the clas-
sical one, and exhibits moreover a red-shift trend as the
cluster size decreases. In the case of gold, this red-shift
towards the threshold of the core-electron excitations is
responsible for the progressive enhancement of the plas-
mon peak with respect to the flat interband spectrum.

For both free and embedded clusters the displayed ab-
sorption spectra show that the quantitative agreement be-
tween the classical and hybrid models becomes more and
more better as the size increases, as expected.

In Figures 7 and 8 are compared the predictions
for free and embedded clusters, within models involving
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Fig. 7. Comparison between the results of the quantum model
(thick line curves) and the classical Mie-theory (thin line
curves), for free gold clusters involving an inner surface skin of
ineffective screening (thickness d = 3.5 a.u.).

Fig. 8. Comparison between the results of the quantum model
(thick line curves) and the classical Mie-theory (thin line
curves), for alumina matrix-embedded gold clusters, within a
model involving both an inner surface skin of ineffective po-
larizability (thickness d = 3.5 a.u.) and an outer vacuum rind
simulating the local matrix porosity (thickness dm = 2 a.u.).

surface skins of ineffective screening. Let us emphasize
that, in these specific cases, the classical model involves

two and three dielectric interfaces for free and embed-
ded clusters, respectively, while the present mixed clas-
sical/quantum model involves one (free clusters) and two
(embedded clusters) interfaces. In the classical theory (full
dielectric description of each material) the ground-state
step-walled electronic density fits perfectly the jellium dis-
tribution. Therefore the inner surface skin of ineffective
screening (thickness d) is characterized by the Drude func-
tion ε′2 = εs, whereas the relevant dielectric function in
the quantum model is the vacuum one ε2 = 1. Hence, in
the present approach, the cluster radius RN is involved
only for the ground-state calculations, and is no longer a
dielectric interface in the optical response calculations.

Contrary to the previous simple models we can see
that the discrepancies between the classical and present
formalisms are now quantitatively and qualitatively very
large for small cluster sizes. For free clusters the classi-
cal spectra do not even exhibit any structures over the
entire spectral range, whereas sharp peaks are observed
in the spectra calculated within the present model. For
large clusters the surface plasmon band emerges only very
weakly from the interband transitions, in both models,
as in experiment [20] (second reference). These structures
might be thought to reflect some “interference” between
the interface modes. However, since the Fermi wavelength
λF is much larger than the skin thicknesses, it is hazardous
to interpret the quantum results in terms of such physical
ingredients, and, except the plasmon peak, the structures
are more probably specific small-size effects.

For the larger sizes N = 440 and N = 832 the qual-
itative agreement between both spectra is indeed unex-
pected, seeing that length scales much smaller than λF

are involved in the physical system, namely d and dm,
and the induced electron densities are basically very dif-
ferent in both models. Since all the materials are homoge-
neous and no free charge density is present in the classical
model, one has ∇ · P(r) = 0. Therefore all the induced
polarization charge densities, related to, either the con-
duction, or the core electrons, are located at the interfaces
r = RN − d, RN and RN + dm. In the present approach
the induced electronic density δn(r) is strongly inhomoge-
neous over the entire radial range [0, RN +dm], and conse-
quently the electric field E(r) inside the inner metal core
[0 < r < RN − d] too, contrary to the pure classical case.
In Figure 9 are displayed the real and imaginary compo-
nents of the induced electron density in the cluster Au832,
for the photon energies E = 2.4 eV and E = 4 eV (thick
line curves). Despite the large basic differences on the mi-
croscopic scale, both models yield rather similar qualita-
tive results because the absorption cross-section is a global
property, and only the total induced polarization charge
density is relevant. In the hybrid model the conduction
electrons give rise to the volume induced charge density
−δn(r) = −δn(r) cos(θ)E0, and the core electrons to both,

(i) volume induced charge densities −∇ ·Pi(r) (Pi(r) =
[(εi − 1)/4π]E(r) with i = 1 (r < R1) and i = m
(r > R2)), and,

(ii) interface induced charge densities at R1 = RN−d and
R2 = RN + dm.
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Fig. 9. The real and imaginary components of the induced
conduction electron density in the cluster Au832, for the exci-
tation energies E = 2.4 eV and E = 4 eV (thick line curves).
Thin line curves : minus the total volumic induced charge den-
sity, the induced polarization charges of the dielectric media
included (see Sect. 3.2).

Owing to the homogeneity of the dielectric media
and the Poisson equation ∆φ(r) = 4πδn(r)/εi, the to-
tal volume induced polarization charge density ρ(r) =
ρ(r) cos(θ)E0 is related to δn(r) according to: ρ(r) =
−δn(r)/ε1(ω) (r < R1), ρ(r) = −δn(r) (R1 < r < R2)
and ρ(r) = −δn(r)/εm(ω) (r > R2) (thin line curves in
Fig. 9). Therefore, when media of high refractive indexes
are involved, the induced conduction electron density is
considerably quenched by the core electron polarization,
except in the surface skins of ineffective screening. Ob-
viously the interface induced densities differ in the two
models, since the local electric field (E(r) at r = R−1 and
r = R+

2 ) and the dielectric functions (εi or ε′i) differ. This
feature explains, partly, why both theoretical approaches
lead to rather similar absorption spectra, and, moreover,
why the classical Mie’s theory works better for noble metal
clusters, as compared to alkali species.

4 Summary and conclusions

In this paper a mixed quantum/classical model for cal-
culating the light-absorption cross-section of a spher-
ical multilayered metallic particle has been reported.
The present theory can be applied to free or matrix-
embedded particles with any number of concentric lay-

ers. In the model the conduction electron gas is quantum-
mechanically treated in the framework of the Kohn-Sham
DFT for the ground-state and the TDLDA theory for
the optical response, while the optical properties of the
various non-metallic media and of the metal ionic back-
grounds are described through phenomenological dielec-
tric functions. The present formalism improves consid-
erably all the previous attempts to include, within the
standard TDLDA formalism, dielectric effects from the
ionic background and/or the surrounding matrix. Assum-
ing the dipolar approximation, the optical response is cal-
culated without additional physical or numerical approx-
imations. All the screening and absorption properties of
the various media, as well as their mutual influence, are
self-consistently taken into account. The model has been
exemplified in the case of free and matrix-embedded no-
ble metal clusters. The results have been compared with
those obtained by using the former models and with the
predictions of the classical Mie-like theory. This analysis
has clearly pointed out the deficiencies of the previous
attempts, especially with regard to the definition of the
effective external field in the TDLDA formalism and the
global nature of the dynamical matrix-embedded particle
polarizability. Moreover, it was emphasized that the light
absorption by the various media is not directly related,
as previously assumed, to the imaginary component of
the total dipole corresponding to each medium. The slow
convergence, over the whole spectral range, of the results
obtained within the present approach towards the classi-
cal predictions has been illustrated. With regard to the
previous works, we have checked that the finite-size-effect
investigations on noble metal clusters, that were recently
published by several authors, remain fortunately suitable,
as long as only the size-dependence of the surface plasmon
frequency is concerned.

Concerning the plasmon peak amplitude and broaden-
ing, its quenching by the interband transitions, and the
absorption in the spectral range dominated by the core
electron excitations, the present microscopical model is
the only available one allowing a direct comparison with
the experimental data, over the entire spectral range. Ob-
viously the present formalism is only a first step towards
a complete quantum description of the optical response
of free or embedded small particles. For instance, refine-
ments of the model could be attempted in order to improve
the phenomenological description of the dielectric proper-
ties of the backgrounds. For instance dipole lattices with
site-dependent polarizabilities could be substituted for the
continuous media [7]. However, such a refinement, which
requires to select a specific discrete geometry, would re-
sult in much more lengthy computations, contrary to the
present approach. In particular, the spherical symmetry is
broken, and the usual procedure consisting in spherically-
averaging the conduction electron-background interaction
for solving the ground-state problem (Kohn-Sham equa-
tions) does not seem consistent with the involved refine-
ment. Nevertheless complete three-dimensional calcula-
tions on small particles would be interesting for testing to
what extent the quenching of the induced electron den-
sity by the polarizable media is ensured in a discrete
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environment. We think that, although the local screen-
ing and quenching effects would depend strongly on the
position, the net effect, averaged over a length scale of a
few nearest-neighbour atomic distances, would be similar
to the one obtained in using continuous media.

The second point, about which model improvement
should be gained in the future, concerns the bulk-like de-
scription of the dielectric properties of the ionic cores,
which are assumed therefore size-independent (these ap-
proximations are assumed in the present work, as in previ-
ous approaches). As stated in the Introduction, refinement
taking into account, in a self-consistent way (full quantum
calculations or phenomenological size-dependent dielectric
functions), the size effects affecting the interband tran-
sitions would be advised in further developments. Nev-
ertheless experimental results on noble metal cluster an-
ions and embedded clusters show that the size effects on
the properties involving the d-band are much less pro-
nounced as compared to those affecting the valence elec-
trons [20]. For instance, the optical properties in the UV
interband region, for both AgN : Al2O3 and AuN : Al2O3

composite films, are quite well reproduced by the classical
theory (Mie or Maxwell Garnett) involving the bulk dielec-
tric functions. Strong discrepancies occur only around the
plasmon band, and below the interband threshold. This
strongly suggest that the use of a size-independent dielec-
tric function for the ionic-core background is a rather good
approximation.

Appendix A: Analytical expression
for the dynamical polarizability α�n

In this appendix we prove the general formula equa-
tion (7). Equation (6) is multiplied by r2fc(r) and the
integration is performed over the radial range [a, b] (a and
b are located in the same homogeneous layer i). Integrat-
ing

∫
r2fc(r)[d2fδn(r)/dr2]dr by parts, one obtains (the

r-dependence of the functions fc(r), fδn(r) and δn(r) is
omitted)

[
r2fc

dfδn
dr

]b
a

−
b∫
a

r2 dfc

dr
dfδn
dr

dr − 2

b∫
a

fcfδndr =

4π
εi

b∫
a

r2fcδndr. (A.1)

The first integral (second term) is integrated by parts.
Taking into account the fact that fc(r) obeys the
Poisson equation (Eq. (6)) with δn(r) = 0, one obtains
(after multiplication by εi)

[
r2

(
fcεi

dfδn
dr
− fδnεi

dfc

dr

)]b
a

= 4π

b∫
a

r2fcδndr. (A.2)

The equation (A.2) is applied (k+1) times to the following
intervals:

(a, b) = [0, R1[ , ]R1, R2[ , . . . , ]Rk−1, Rk[ , ]Rk,∞[ .

The (k+1) equations are then added. Using the boundary
conditions at the interfaces R1, R2, . . . , Rk, one obtains[
r2

(
fcεi

dfδn
dr
− fδnεi

dfc

dr

)]∞
0

= 4π

∞∫
0

r2fcδndr. (A.3)

Using the respective expressions of both potentials at large
distance, namely fc(r) = (−r + bm/r

2) and fδn(r) =
αδn/(εmr2), equation (A.3) reduces to

3αδn = 4π

∞∫
0

r2fcδn(r)dr. (A.4)

Appendix B: model involving a single interface
(radius R1)

In this appendix explicit formula for a simple matrix-
embedded metal sphere are given. The classical ingre-
dients are listed below. The coefficients ai and bi (see
Eq. (1)) are

a1 = − 3εm
ε′1 + 2εm

, bm =
ε′1 − εm
ε′1 + 2εm

R3
1. (B.1)

The polarizability of the matrix-embedded particle
(Eq. (2)) is thus

α′c(ω) = εm
ε′1 − εm
ε′1 + 2εm

R3
1. (B.2)

For the quantum model, the ingredients involved in
fc(r) (first term of the total electrostatic potential) are
the same, namely a1, bm and α′c(ω) (notation αc(ω) in
Sect. 2.2), except for the replacement of ε′1(ω) by ε1(ω) in
the above expressions, where ε1(ω) is the interband con-
tribution to the metal dielectric function.

The polarizability αδn(ω) associated to the induced
electronic density δn(r), the directly-induced polarization
charges included, is given by the equivalent following an-
alytical expressions (Eq. (7))

αδn(ω) =
4π
3

a1

R1∫
0

r3δn(r)dr +

∞∫
R1

[
bm − r3

]
δn(r)dr

 ,
(B.3)

αδn(ω) =
4π
3

a1

∞∫
0

r3δn(r)dr

+
bm
R3

1

∞∫
R1

(
R3

1 − r3
)
δn(r)dr

 . (B.4)
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